talc/talc-lang/src/vm.rs

484 lines
13 KiB
Rust

use std::{cmp::Ordering, collections::HashMap, rc::Rc, sync::{atomic::AtomicBool, Arc}};
use crate::{ast::{BinaryOp, UnaryOp}, chunk::Instruction, exception::{throw, Exception, Result}, lstring::LStr, symbol::{Symbol, SYM_CALL_STACK_OVERFLOW, SYM_INTERRUPTED, SYM_NAME_ERROR, SYM_TYPE_ERROR}, value::{function::{FuncAttrs, Function, NativeFunc}, Value}};
struct TryFrame { idx: usize, stack_len: usize }
struct CallFrame {
func: Rc<Function>,
locals: Vec<Value>,
try_frames: Vec<TryFrame>,
ip: usize,
root: bool,
}
impl CallFrame {
fn new(func: Rc<Function>, locals: Vec<Value>) -> Self {
Self {
func,
locals,
try_frames: Vec::new(),
ip: 0,
root: false,
}
}
}
pub struct Vm {
stack: Vec<Value>,
call_stack: Vec<CallFrame>,
stack_max: usize,
globals: HashMap<Symbol, Value>,
interrupt: Arc<AtomicBool>,
}
pub fn binary_op(o: BinaryOp, a: Value, b: Value) -> Result<Value> {
match o {
BinaryOp::Add => a + b,
BinaryOp::Sub => a - b,
BinaryOp::Mul => a * b,
BinaryOp::Div => a / b,
BinaryOp::Mod => a.modulo(b),
BinaryOp::IntDiv => a.int_div(b),
BinaryOp::Pow => a.pow(b),
BinaryOp::Shl => a << b,
BinaryOp::Shr => a >> b,
BinaryOp::BitAnd => a & b,
BinaryOp::BitXor => a ^ b,
BinaryOp::BitOr => a | b,
BinaryOp::Eq => Ok(Value::Bool(a == b)),
BinaryOp::Ne => Ok(Value::Bool(a != b)),
BinaryOp::Gt => a.val_cmp(&b).map(|o| Value::Bool(o == Ordering::Greater)),
BinaryOp::Ge => a.val_cmp(&b).map(|o| Value::Bool(o != Ordering::Less)),
BinaryOp::Lt => a.val_cmp(&b).map(|o| Value::Bool(o == Ordering::Less)),
BinaryOp::Le => a.val_cmp(&b).map(|o| Value::Bool(o != Ordering::Greater)),
BinaryOp::Range => a.range(&b, false),
BinaryOp::RangeIncl => a.range(&b, true),
BinaryOp::Concat => a.concat(&b),
BinaryOp::Append => a.append(b),
}
}
pub fn unary_op(o: UnaryOp, a: Value) -> Result<Value> {
match o {
UnaryOp::Neg => -a,
UnaryOp::Not => Ok(Value::Bool(!a.truthy())),
UnaryOp::RangeEndless => a.range_endless(),
}
}
enum CallOutcome {
Call(Vec<Value>),
Partial(Value),
}
fn get_call_outcome(mut args: Vec<Value>) -> Result<CallOutcome> {
let f = &args[0];
let Some(attrs) = f.func_attrs() else {
throw!(*SYM_TYPE_ERROR, "cannot call non-function {f:#}")
};
let argc = args.len() - 1;
if attrs.variadic && argc >= attrs.arity {
let vararg = args.split_off(attrs.arity + 1);
args.push(vararg.into());
Ok(CallOutcome::Call(args))
} else if argc == attrs.arity {
Ok(CallOutcome::Call(args))
} else if argc > attrs.arity {
throw!(*SYM_TYPE_ERROR, "too many arguments for function")
} else {
let remaining = attrs.arity - argc;
let f = f.clone();
let nf = move |vm: &mut Vm, inner_args: Vec<Value>| {
let mut ia = inner_args.into_iter();
ia.next();
let mut args: Vec<Value> = args.clone().into_iter().chain(ia).collect();
if attrs.variadic {
let Value::List(varargs) = args.pop()
.expect("did not receive vararg") else {
panic!("did not receive vararg")
};
let varargs = Rc::unwrap_or_clone(varargs).take();
args.extend(varargs);
}
vm.call_value(f.clone(), args)
};
let nf = NativeFunc {
attrs: FuncAttrs { arity: remaining, variadic: attrs.variadic },
func: Box::new(nf),
};
Ok(CallOutcome::Partial(nf.into()))
}
}
impl Vm {
pub fn new(stack_max: usize) -> Self {
Self {
stack: Vec::with_capacity(16),
call_stack: Vec::with_capacity(16),
globals: HashMap::with_capacity(16),
stack_max,
interrupt: Arc::new(AtomicBool::new(false)),
}
}
pub fn get_interrupt(&self) -> Arc<AtomicBool> {
self.interrupt.clone()
}
pub fn set_global(&mut self, name: Symbol, val: Value) {
self.globals.insert(name, val);
}
pub fn set_global_name<'a, S>(&mut self, name: S, val: Value)
where S: Into<&'a LStr> {
self.globals.insert(Symbol::get(name.into()), val);
}
pub fn get_global(&self, name: Symbol) -> Option<&Value> {
self.globals.get(&name)
}
pub fn globals(&self) -> &HashMap<Symbol, Value> {
&self.globals
}
pub fn call_value(&mut self, value: Value, args: Vec<Value>) -> Result<Value> {
self.check_interrupt()?;
match get_call_outcome(args)? {
CallOutcome::Partial(v) => Ok(v),
CallOutcome::Call(args) => match value {
Value::Function(f) => self.run_function(f, args),
Value::NativeFunc(f) => (f.func)(self, args),
_ => unreachable!("already verified by calling get_call_type")
}
}
}
pub fn run_function(&mut self, func: Rc<Function>, args: Vec<Value>) -> Result<Value> {
if func.attrs.arity + 1 != args.len() {
throw!(*SYM_TYPE_ERROR, "function call with wrong argument count");
}
let init_stack_len = self.stack.len();
let mut frame = CallFrame::new(func, args);
frame.root = true;
loop {
let instr = frame.func.chunk.instrs[frame.ip];
frame.ip += 1;
match self.run_instr(&mut frame, instr) {
Ok(None) => (),
Ok(Some(v)) => {
self.stack.truncate(init_stack_len);
return Ok(v)
}
Err(e) => {
if let Err(e) = self.handle_exception(&mut frame, e) {
self.stack.truncate(init_stack_len);
return Err(e)
}
}
}
}
}
fn handle_exception(&mut self, frame: &mut CallFrame, exc: Exception) -> Result<()> {
loop {
while let Some(try_frame) = frame.try_frames.pop() {
let table = &frame.func.chunk.try_tables[try_frame.idx];
for catch in &table.catches {
if catch.types.is_none() || catch.types.as_ref().unwrap().contains(&exc.ty) {
frame.ip = catch.addr;
frame.locals.truncate(table.local_count);
self.stack.truncate(try_frame.stack_len);
self.stack.push(Value::Table(exc.to_table()));
return Ok(())
}
}
}
if frame.root {
return Err(exc)
}
*frame = self.call_stack.pop().expect("no root frame");
}
}
#[inline]
fn push(&mut self, v: Value) {
self.stack.push(v);
}
#[inline]
fn pop(&mut self) -> Value {
self.stack.pop().expect("temporary stack underflow")
}
#[inline]
fn pop_n(&mut self, n: usize) -> Vec<Value> {
let res = self.stack.split_off(self.stack.len() - n);
assert!(res.len() == n, "temporary stack underflow");
res
}
fn check_interrupt(&mut self) -> Result<()> {
if self.interrupt.fetch_and(false, std::sync::atomic::Ordering::Relaxed) {
throw!(*SYM_INTERRUPTED)
}
Ok(())
}
fn run_instr(&mut self, frame: &mut CallFrame, instr: Instruction) -> Result<Option<Value>> {
use Instruction as I;
match instr {
// do nothing
I::Nop => (),
// [] -> [locals[n]]
I::LoadLocal(n)
=> self.push(frame.locals[usize::from(n)].clone()),
// [x] -> [], locals[n] = x
I::StoreLocal(n)
=> frame.locals[usize::from(n)] = self.pop(),
// [x] -> [], locals.push(x)
I::NewLocal
=> frame.locals.push(self.pop()),
// locals.pop_n(n)
I::DropLocal(n)
=> frame.locals.truncate(frame.locals.len() - usize::from(n)),
// [] -> [globals[s]]
I::LoadGlobal(s) => {
let sym = unsafe { s.to_symbol_unchecked() };
let v = match self.globals.get(&sym) {
Some(v) => v.clone(),
None => throw!(*SYM_NAME_ERROR, "undefined global {}", sym.name()),
};
self.push(v);
},
// [x] -> [], globals[s] = x
I::StoreGlobal(s) => {
let sym = unsafe { s.to_symbol_unchecked() };
let v = self.pop();
self.globals.insert(sym, v);
},
// [] -> [consts[n]]
I::Const(n)
=> self.push(frame.func.chunk.consts[usize::from(n)].clone()),
// [] -> [nil]
I::Nil => self.push(Value::Nil),
// [] -> [b]
I::Bool(b) => self.push(Value::Bool(b)),
// [] -> [s]
I::Symbol(s) => {
let sym = unsafe { Symbol::from_id_unchecked(u32::from(s)) };
self.push(Value::Symbol(sym));
},
// [] -> [n]
I::Int(n) => self.push(Value::Int(i64::from(n))),
// [x] -> [x,x]
I::Dup => self.push(self.stack[self.stack.len() - 1].clone()),
// [x,y] -> [x,y,x,y]
I::DupTwo => {
self.push(self.stack[self.stack.len() - 2].clone());
self.push(self.stack[self.stack.len() - 2].clone());
},
// [a0,a1...an] -> []
I::Drop(n) => for _ in 0..u32::from(n) { self.pop(); },
// [x,y] -> [y,x]
I::Swap => {
let len = self.stack.len();
self.stack.swap(len - 1, len - 2);
},
// [x,y] -> [y op x]
I::BinaryOp(op) => {
let b = self.pop();
let a = self.pop();
self.push(binary_op(op, a, b)?);
},
// [x] -> [op x]
I::UnaryOp(op) => {
let a = self.pop();
self.push(unary_op(op, a)?);
},
// [a0,a1...an] -.> [[a0,a1...an]]
I::NewList(n) => {
let list = self.pop_n(n as usize);
self.push(list.into());
},
// [l,a0,a1...an] -.> [l ++ [a0,a1...an]]
I::GrowList(n) => {
let ext = self.pop_n(n as usize);
let list = self.pop();
let Value::List(list) = list else { panic!("not a list") };
list.borrow_mut().extend(ext);
self.push(Value::List(list));
},
// [k0,v0...kn,vn] -.> [{k0=v0...kn=vn}]
I::NewTable(n) => {
let mut table = HashMap::new();
for _ in 0..n {
let v = self.pop();
let k = self.pop();
table.insert(k.try_into()?, v);
}
self.push(table.into());
},
// [t,k0,v0...kn,vn] -> [t ++ {k0=v0...kn=vn}]
I::GrowTable(n) => {
let mut ext = self.pop_n(2 * n as usize);
let table = self.pop();
let Value::Table(table) = table else { panic!("not a table") };
let mut table_ref = table.borrow_mut();
for _ in 0..n {
// can't panic: pop_n checked that ext would have len 2*n
let v = ext.pop().unwrap();
let k = ext.pop().unwrap();
table_ref.insert(k.try_into()?, v);
}
drop(table_ref);
self.push(Value::Table(table));
},
// [ct, idx] -> [ct!idx]
I::Index => {
let idx = self.pop();
let ct = self.pop();
self.push(ct.index(idx)?);
},
// [ct, idx, v] -> [v], ct!idx = v
I::StoreIndex => {
let v = self.pop();
let idx = self.pop();
let ct = self.pop();
ct.store_index(self, idx, v.clone())?;
self.push(v);
},
// ip = n
I::Jump(n) => {
self.check_interrupt()?;
frame.ip = usize::from(n);
},
// [v] ->, [], if v then ip = n
I::JumpTrue(n) => if self.pop().truthy() {
self.check_interrupt()?;
frame.ip = usize::from(n);
},
// [v] ->, [], if not v then ip = n
I::JumpFalse(n) => if !self.pop().truthy() {
self.check_interrupt()?;
frame.ip = usize::from(n);
},
// [v] -> [iter(v)]
I::IterBegin => {
let iter = self.pop().to_iter_function()?;
self.push(iter);
},
// [i,cell(v)] -> [i,v]
// [i,nil] -> [], ip = n
I::IterTest(n) => {
if let Some(v) = self.pop().iter_unpack() {
self.push(v);
} else {
self.pop();
frame.ip = usize::from(n);
}
},
// try_frames.push(t, stack.len())
I::BeginTry(t) => {
let tryframe = TryFrame {
idx: usize::from(t),
stack_len: self.stack.len()
};
frame.try_frames.push(tryframe);
},
// try_frames.pop()
I::EndTry => {
frame.try_frames.pop().expect("no try to pop");
},
// [f,a0,a1...an] -> [f(a0,a1...an)]
I::Call(n) => {
let n = usize::from(n);
let args = self.pop_n(n + 1);
let args = match get_call_outcome(args)? {
CallOutcome::Call(args) => args,
CallOutcome::Partial(v) => {
self.push(v);
return Ok(None)
}
};
if let Value::NativeFunc(nf) = &args[0] {
let nf = nf.clone();
// safety: frame is restored immediately
// after function call ends
// ~25% performance improvement in
// code heavy on native function calls
unsafe {
let f = std::ptr::read(frame);
self.call_stack.push(f);
}
let res = (nf.func)(self, args);
// safety: frame was referencing invalid memory due to
// previous unsafe block, write will fix that
unsafe {
let f = self.call_stack.pop().expect("no frame to pop");
std::ptr::write(frame, f);
}
// make sure we restored the value of frame
// before propagating exceptions
let res = res?;
self.stack.push(res);
} else if let Value::Function(func) = &args[0] {
if self.call_stack.len() + 1 >= self.stack_max {
throw!(*SYM_CALL_STACK_OVERFLOW, "call stack overflow")
}
let new_frame = CallFrame::new(func.clone(), args);
let old_frame = std::mem::replace(frame, new_frame);
self.call_stack.push(old_frame);
} else {
unreachable!("already verified by calling get_call_type");
}
},
// [v] -> [], return v
I::Return if frame.root => {
return Ok(Some(self.pop()));
},
// [v] -> [], return v
I::Return => {
self.check_interrupt()?;
*frame = self.call_stack.pop().expect("no root frame");
},
}
Ok(None)
}
}
#[macro_export]
macro_rules! vmcall {
($vm:expr; $func:expr, $($arg:expr),*) => {{
let f = $func;
$vm.call_value(f.clone(), vec![f, $($arg),*])
}};
($vm:expr; $func:expr) => {{
let f = $func;
$vm.call_value(f.clone(), vec![f])
}};
}
#[macro_export]
macro_rules! vmcalliter {
($($input:tt)*) => {
$crate::vmcall!($($input)*).map(|v| v.iter_unpack())
}
}