talc/talc-lang/src/vm.rs

673 lines
17 KiB
Rust

use std::{
cmp::Ordering,
collections::HashMap,
ops::Not,
rc::Rc,
sync::{atomic::AtomicBool, Arc},
};
use crate::{
chunk::Instruction,
exception::{throw, Exception, Result},
lstring::{LStr, LString},
parser::ast::{BinaryOp, UnaryOp},
symbol::{
Symbol, SYM_CALL_STACK_OVERFLOW, SYM_INTERRUPTED, SYM_NAME_ERROR, SYM_TYPE_ERROR,
},
value::{
function::{FuncAttrs, Function, NativeFunc},
HashValue, Value,
},
};
struct TryFrame {
idx: usize,
stack_len: usize,
}
struct CallFrame {
func: Rc<Function>,
locals: Vec<Value>,
try_frames: Vec<TryFrame>,
ip: usize,
root: bool,
}
impl CallFrame {
fn new(func: Rc<Function>, locals: Vec<Value>) -> Self {
Self {
func,
locals,
try_frames: Vec::new(),
ip: 0,
root: false,
}
}
}
pub struct Vm {
stack: Vec<Value>,
call_stack: Vec<CallFrame>,
stack_max: usize,
globals: HashMap<Symbol, Value>,
interrupt: Arc<AtomicBool>,
args: Vec<LString>,
}
pub fn binary_op(o: BinaryOp, a: Value, b: Value) -> Result<Value> {
match o {
BinaryOp::Add => a + b,
BinaryOp::Sub => a - b,
BinaryOp::Mul => a * b,
BinaryOp::Div => a / b,
BinaryOp::Mod => a.modulo(b),
BinaryOp::IntDiv => a.int_div(b),
BinaryOp::Pow => a.pow(b),
BinaryOp::Shl => a << b,
BinaryOp::Shr => a >> b,
BinaryOp::BitAnd => a & b,
BinaryOp::BitXor => a ^ b,
BinaryOp::BitOr => a | b,
BinaryOp::Eq => Ok(Value::Bool(a == b)),
BinaryOp::Ne => Ok(Value::Bool(a != b)),
BinaryOp::Gt => a.val_cmp(&b).map(|o| Value::Bool(o == Ordering::Greater)),
BinaryOp::Ge => a.val_cmp(&b).map(|o| Value::Bool(o != Ordering::Less)),
BinaryOp::Lt => a.val_cmp(&b).map(|o| Value::Bool(o == Ordering::Less)),
BinaryOp::Le => a.val_cmp(&b).map(|o| Value::Bool(o != Ordering::Greater)),
BinaryOp::Range => a.range(&b),
BinaryOp::RangeIncl => a.range_incl(&b),
BinaryOp::Concat => a.concat(&b),
BinaryOp::Append => a.append(b),
}
}
pub fn unary_op(o: UnaryOp, a: Value) -> Result<Value> {
match o {
UnaryOp::Neg => -a,
UnaryOp::Not => Ok(Value::Bool(!a.truthy())),
UnaryOp::BitNot => a.not(),
UnaryOp::RangeFrom => a.range_from(),
UnaryOp::RangeTo => a.range_to(),
UnaryOp::RangeToIncl => a.range_to_incl(),
}
}
enum CallOutcome {
Call(Vec<Value>),
Partial(Value),
}
fn get_call_outcome(args: Vec<Value>) -> Result<CallOutcome> {
let f = &args[0];
let Some(attrs) = f.func_attrs() else {
throw!(*SYM_TYPE_ERROR, "cannot call non-function {f:#}")
};
let argc = args.len() - 1;
match argc.cmp(&attrs.arity) {
Ordering::Equal => Ok(CallOutcome::Call(args)),
Ordering::Greater => {
throw!(*SYM_TYPE_ERROR, "too many arguments for function {}", f)
}
Ordering::Less => {
let remaining = attrs.arity - argc;
let f = f.clone();
let nf = move |vm: &mut Vm, inner_args: Vec<Value>| {
let mut ia = inner_args.into_iter();
ia.next();
let args: Vec<Value> = args.clone().into_iter().chain(ia).collect();
vm.call_value(f.clone(), args)
};
let nf = NativeFunc {
attrs: FuncAttrs {
arity: remaining,
name: None,
},
func: Box::new(nf),
};
Ok(CallOutcome::Partial(nf.into()))
}
}
}
impl Vm {
pub fn new(stack_max: usize, args: Vec<LString>) -> Self {
Self {
stack: Vec::with_capacity(16),
call_stack: Vec::with_capacity(16),
globals: HashMap::with_capacity(16),
stack_max,
args,
interrupt: Arc::new(AtomicBool::new(false)),
}
}
pub fn get_interrupt(&self) -> Arc<AtomicBool> {
self.interrupt.clone()
}
pub fn set_global(&mut self, name: Symbol, val: Value) {
self.globals.insert(name, val);
}
pub fn set_global_name<'a, S>(&mut self, name: S, val: Value)
where
S: Into<&'a LStr>,
{
self.globals.insert(Symbol::get(name.into()), val);
}
pub fn get_global(&self, name: Symbol) -> Option<&Value> {
self.globals.get(&name)
}
pub fn globals(&self) -> &HashMap<Symbol, Value> {
&self.globals
}
pub fn args(&self) -> &Vec<LString> {
&self.args
}
pub fn call_value(&mut self, value: Value, args: Vec<Value>) -> Result<Value> {
self.check_interrupt()?;
match get_call_outcome(args)? {
CallOutcome::Partial(v) => Ok(v),
CallOutcome::Call(args) => match value {
Value::Function(f) => self.run_function(f, args),
Value::NativeFunc(f) => (f.func)(self, args),
_ => unreachable!("already verified by calling get_call_type"),
},
}
}
pub fn run_function(&mut self, func: Rc<Function>, args: Vec<Value>) -> Result<Value> {
if func.attrs.arity + 1 != args.len() {
throw!(*SYM_TYPE_ERROR, "function call with wrong argument count");
}
let init_stack_len = self.stack.len();
let mut frame = CallFrame::new(func, args);
frame.root = true;
loop {
let instr = frame.func.chunk.instrs[frame.ip];
frame.ip += 1;
match self.run_instr(&mut frame, instr) {
Ok(None) => (),
Ok(Some(v)) => {
self.stack.truncate(init_stack_len);
return Ok(v)
}
Err(e) => {
if let Err(e) = self.handle_exception(&mut frame, e) {
self.stack.truncate(init_stack_len);
return Err(e)
}
}
}
}
}
fn handle_exception(&mut self, frame: &mut CallFrame, exc: Exception) -> Result<()> {
loop {
while let Some(try_frame) = frame.try_frames.pop() {
let table = &frame.func.chunk.try_tables[try_frame.idx];
for catch in &table.catches {
if catch.types.is_none()
|| catch.types.as_ref().unwrap().contains(&exc.ty)
{
frame.ip = catch.addr;
frame.locals.truncate(table.local_count);
self.stack.truncate(try_frame.stack_len);
self.stack.push(Value::Table(exc.to_table()));
return Ok(())
}
}
}
if frame.root {
return Err(exc)
}
*frame = self.call_stack.pop().expect("no root frame");
}
}
#[inline]
fn push(&mut self, v: Value) {
self.stack.push(v);
}
#[inline]
fn pop(&mut self) -> Value {
self.stack.pop().expect("temporary stack underflow")
}
#[inline]
fn take_n(&mut self, n: usize) -> Value {
let i = self.stack.len() - n - 1;
std::mem::take(&mut self.stack[i])
}
#[inline]
fn pop_n(&mut self, n: usize) -> Vec<Value> {
let res = self.stack.split_off(self.stack.len() - n);
assert!(res.len() == n, "temporary stack underflow");
res
}
pub fn check_interrupt(&mut self) -> Result<()> {
if self
.interrupt
.fetch_and(false, std::sync::atomic::Ordering::Relaxed)
{
throw!(*SYM_INTERRUPTED)
}
Ok(())
}
fn run_instr(
&mut self,
frame: &mut CallFrame,
instr: Instruction,
) -> Result<Option<Value>> {
use Instruction as I;
match instr {
// do nothing
I::Nop => (),
// [] -> [locals[n]]
I::LoadLocal(n) => self.push(frame.locals[usize::from(n)].clone()),
// [x] -> [], locals[n] = x
I::StoreLocal(n) => frame.locals[usize::from(n)] = self.pop(),
// [x] -> [], locals.push(x)
I::NewLocal => frame.locals.push(self.pop()),
// locals.pop_n(n)
I::DropLocal(n) => frame.locals.truncate(frame.locals.len() - usize::from(n)),
// [] -> [globals[s]]
I::LoadGlobal(s) => {
let sym = unsafe { s.to_symbol_unchecked() };
let v = match self.globals.get(&sym) {
Some(v) => v.clone(),
None => throw!(*SYM_NAME_ERROR, "undefined global {}", sym.name()),
};
self.push(v);
}
// [x] -> [], globals[s] = x
I::StoreGlobal(s) => {
let sym = unsafe { s.to_symbol_unchecked() };
let v = self.pop();
self.globals.insert(sym, v);
}
I::CloseOver(n) => {
let n = usize::from(n);
let v = std::mem::replace(&mut frame.locals[n], Value::Nil);
let v = v.to_cell();
frame.locals[n] = v.clone();
self.push(v);
}
I::Closure(n) => {
let f = frame.func.chunk.consts[usize::from(n)].clone();
let Value::Function(f) = f else {
panic!("attempt to build closure from non-closure constant")
};
let mut f = f.as_ref().clone();
let captured: Vec<_> = self
.pop_n(f.state.len())
.into_iter()
.map(|v| {
let Value::Cell(v) = v else {
panic!("attempt to build closure from non-cell local");
};
v
})
.collect();
f.state = captured.into_boxed_slice();
self.push(f.into());
}
I::LoadUpvalue(n) => {
let v = frame.func.state[usize::from(n)].clone();
self.push(v.borrow().clone());
}
I::StoreUpvalue(n) => {
let v = frame.func.state[usize::from(n)].clone();
*v.borrow_mut() = self.pop();
}
I::ContinueUpvalue(n) => {
let v = frame.func.state[usize::from(n)].clone();
self.push(Value::Cell(v));
}
I::LoadClosedLocal(n) => {
let Value::Cell(c) = &frame.locals[usize::from(n)] else {
panic!("attempt to load from closed non-cell local");
};
self.push(c.borrow().clone());
}
I::StoreClosedLocal(n) => {
let Value::Cell(c) = &frame.locals[usize::from(n)] else {
panic!("attempt to store to closed non-cell local");
};
*c.borrow_mut() = self.pop();
}
// [] -> [consts[n]]
I::Const(n) => self.push(frame.func.chunk.consts[usize::from(n)].clone()),
// [] -> [nil]
I::Nil => self.push(Value::Nil),
// [] -> [b]
I::Bool(b) => self.push(Value::Bool(b)),
// [] -> [s]
I::Symbol(s) => {
let sym = unsafe { Symbol::from_id_unchecked(u32::from(s)) };
self.push(Value::Symbol(sym));
}
// [] -> [n]
I::Int(n) => self.push(Value::from(i64::from(n))),
// [x] -> [x,x]
I::Dup => self.push(self.stack[self.stack.len() - 1].clone()),
// [x,y] -> [x,y,x,y]
I::DupTwo => {
self.push(self.stack[self.stack.len() - 2].clone());
self.push(self.stack[self.stack.len() - 2].clone());
}
// [a0,a1...an] -> []
I::Drop => {
self.pop();
}
// [x,y] -> [y,x]
I::Swap => {
let len = self.stack.len();
self.stack.swap(len - 1, len - 2);
}
// [x,y] -> [y op x]
I::BinaryOp(op) => {
let b = self.pop();
let a = self.pop();
self.push(binary_op(op, a, b)?);
}
// [x] -> [op x]
I::UnaryOp(op) => {
let a = self.pop();
self.push(unary_op(op, a)?);
}
// [a0,a1...an] -.> [[a0,a1...an]]
I::NewList(n) => {
let list = self.pop_n(n as usize);
self.push(list.into());
}
// [l,a0,a1...an] -.> [l ++ [a0,a1...an]]
I::GrowList(n) => {
let ext = self.pop_n(n as usize);
let list = self.pop();
let Value::List(list) = list else {
panic!("not a list")
};
list.borrow_mut().extend(ext);
self.push(Value::List(list));
}
// [l,e] -> [l ++ e]
I::ExtendList => {
let ext = self.pop();
let list = self.pop(); // must be a list
let Value::List(list) = list else {
panic!("not a list")
};
match ext {
Value::List(ext) => {
list.borrow_mut().extend_from_slice(ext.borrow().as_slice());
}
_ => {
let mut list = list.borrow_mut();
let f = ext.to_iter_function()?;
loop {
self.push(f.clone());
self.instr_call(0, frame)?;
match self.pop().iter_unpack() {
None => break,
Some(v) => list.push(v),
}
}
}
}
self.push(Value::List(list));
}
// [k0,v0...kn,vn] -.> [{k0=v0...kn=vn}]
I::NewTable(n) => {
let n = n as usize;
let mut table = HashMap::new();
for i in 0..n {
let k: HashValue = self.take_n(2 * (n - i - 1) + 1).try_into()?;
let v = self.take_n(2 * (n - i - 1));
if v == Value::Nil {
table.remove(&k);
} else {
table.insert(k, v);
}
}
self.stack.truncate(self.stack.len() - 2 * n);
self.push(table.into());
}
// [t,k0,v0...kn,vn] -> [t ++ {k0=v0...kn=vn}]
I::GrowTable(n) => {
let n = n as usize;
let table = self.take_n(2 * n);
let Value::Table(table) = table else {
panic!("not a table")
};
let mut table_ref = table.borrow_mut();
for i in 0..n {
let k: HashValue = self.take_n(2 * (n - i - 1) + 1).try_into()?;
let v = self.take_n(2 * (n - i - 1));
if v == Value::Nil {
table_ref.remove(&k);
} else {
table_ref.insert(k, v);
}
}
self.stack.truncate(self.stack.len() - 2 * n - 1);
drop(table_ref);
self.push(Value::Table(table));
}
I::ExtendTable => {
let ext = self.pop();
let table = self.pop(); // must be a list
let Value::Table(table) = table else {
panic!("not a table")
};
let Value::Table(ext) = ext else {
throw!(
*SYM_TYPE_ERROR,
"cannot interpolate value {:#} into table",
ext
)
};
let mut table_ref = table.borrow_mut();
for (k, v) in ext.borrow().iter() {
table_ref.insert(k.clone(), v.clone());
}
drop(table_ref);
self.push(Value::Table(table));
}
// [ct, idx] -> [ct[idx]]
I::Index => {
let idx = self.pop();
let ct = self.pop();
self.push(ct.index(idx)?);
}
// [ct, idx, v] -> [v], ct[idx] = v
I::StoreIndex => {
let v = self.pop();
let idx = self.pop();
let ct = self.pop();
ct.store_index(self, idx, v.clone())?;
self.push(v);
}
// ip = n
I::Jump(n) => {
self.check_interrupt()?;
frame.ip = usize::from(n);
}
// [v] ->, [], if v then ip = n
I::JumpTrue(n) => {
if self.pop().truthy() {
self.check_interrupt()?;
frame.ip = usize::from(n);
}
}
// [v] ->, [], if not v then ip = n
I::JumpFalse(n) => {
if !self.pop().truthy() {
self.check_interrupt()?;
frame.ip = usize::from(n);
}
}
// [v] -> [iter(v)]
I::IterBegin => {
let iter = self.pop().to_iter_function()?;
self.push(iter);
}
// [i,cell(v)] -> [i,v]
// [i,nil] -> [], ip = n
I::IterTest(n) => {
if let Some(v) = self.pop().iter_unpack() {
self.push(v);
} else {
self.pop();
frame.ip = usize::from(n);
}
}
// try_frames.push(t, stack.len())
I::BeginTry(t) => {
let tryframe = TryFrame {
idx: usize::from(t),
stack_len: self.stack.len(),
};
frame.try_frames.push(tryframe);
}
// try_frames.pop()
I::EndTry => {
frame.try_frames.pop().expect("no try to pop");
}
// [f,a0,a1...an] -> [f(a0,a1...an)]
I::Call(n) => self.instr_call(n as usize, frame)?,
// [f,a0,a1...an] -> [], return f(a0,a1...an)
I::Tail(n) => {
self.check_interrupt()?;
let n = usize::from(n);
let args = self.pop_n(n + 1);
let args = match get_call_outcome(args)? {
CallOutcome::Call(args) => args,
CallOutcome::Partial(v) => {
if frame.root {
return Ok(Some(v))
}
self.check_interrupt()?;
*frame = self.call_stack.pop().expect("no root frame");
return Ok(None)
}
};
if let Value::NativeFunc(nf) = &args[0] {
let nf = nf.clone();
let res = (nf.func)(self, args)?;
if frame.root {
return Ok(Some(res))
}
self.push(res);
*frame = self.call_stack.pop().expect("no root frame");
} else if let Value::Function(func) = &args[0] {
let mut new_frame = CallFrame::new(func.clone(), args);
new_frame.root = frame.root;
*frame = new_frame;
} else {
unreachable!("already verified by calling get_call_type");
}
}
// [v] -> [], return v
I::Return if frame.root => return Ok(Some(self.pop())),
// [v] -> [], return v
I::Return => {
self.check_interrupt()?;
*frame = self.call_stack.pop().expect("no root frame");
}
}
Ok(None)
}
fn instr_call(&mut self, n: usize, frame: &mut CallFrame) -> Result<()> {
self.check_interrupt()?;
let args = self.pop_n(n + 1);
let args = match get_call_outcome(args)? {
CallOutcome::Call(args) => args,
CallOutcome::Partial(v) => {
self.push(v);
return Ok(())
}
};
if let Value::NativeFunc(nf) = &args[0] {
let nf = nf.clone();
// safety: frame is restored immediately
// after function call ends
// ~25% performance improvement in
// code heavy on native function calls
unsafe {
let f = std::ptr::read(frame);
self.call_stack.push(f);
}
let res = (nf.func)(self, args);
// safety: frame was referencing invalid memory due to
// previous unsafe block, write will fix that
unsafe {
let f = self.call_stack.pop().expect("no frame to pop");
std::ptr::write(frame, f);
}
// make sure we restored the value of frame
// before propagating exceptions
let res = res?;
self.push(res);
} else if let Value::Function(func) = &args[0] {
if self.call_stack.len() + 1 >= self.stack_max {
throw!(*SYM_CALL_STACK_OVERFLOW, "call stack overflow")
}
let new_frame = CallFrame::new(func.clone(), args);
let old_frame = std::mem::replace(frame, new_frame);
self.call_stack.push(old_frame);
} else {
unreachable!("already verified by calling get_call_type");
}
Ok(())
}
}
#[macro_export]
macro_rules! vmcall {
($vm:expr; $func:expr, $($arg:expr),*) => {{
let f = $func;
$vm.call_value(f.clone(), vec![f, $($arg),*])
}};
($vm:expr; $func:expr) => {{
let f = $func;
$vm.call_value(f.clone(), vec![f])
}};
}
#[macro_export]
macro_rules! vmcalliter {
($($input:tt)*) => {
$crate::vmcall!($($input)*).map(|v| v.iter_unpack())
}
}