talc/talc-std/src/value.rs
trimill 668e0712c8
All checks were successful
docs / test (push) Successful in 9s
fixes and destructure
2024-12-30 23:56:53 -05:00

335 lines
8.7 KiB
Rust

use std::{cell::RefCell, collections::HashMap, rc::Rc};
use talc_lang::{
exception::{exception, Result},
lformat,
number::{Int, Ratio},
parser::{parse_float, parse_int},
prelude::*,
symbol::{symbol, Symbol, SYM_TYPE_ERROR, SYM_VALUE_ERROR},
throw,
value::{HashValue, Value},
vm::Vm,
};
use talc_macros::native_func;
use crate::unpack_args;
pub fn load(vm: &mut Vm) {
vm.set_global_name("type", type_().into());
vm.set_global_name("is", is().into());
vm.set_global_name("as", as_().into());
vm.set_global_name("copy", copy().into());
vm.set_global_name("str", str_().into());
vm.set_global_name("repr", repr().into());
vm.set_global_name("symbol_name", symbol_name().into());
vm.set_global_name("symbol_of", symbol_of().into());
vm.set_global_name("symbol_exists", symbol_exists().into());
vm.set_global_name("cell", cell().into());
vm.set_global_name("uncell", uncell().into());
vm.set_global_name("cell_replace", cell_replace().into());
vm.set_global_name("cell_take", cell_take().into());
vm.set_global_name("func_state", func_state().into());
vm.set_global_name("func_arity", func_arity().into());
vm.set_global_name("func_name", func_name().into());
vm.set_global_name("apply", apply().into());
vm.set_global_name("compile", compile().into());
}
//
// types
//
#[native_func(1, "type")]
pub fn type_(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, val] = unpack_args!(args);
Ok(val.get_type().into())
}
#[native_func(2)]
pub fn is(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, val, ty] = unpack_args!(args);
let Value::Symbol(ty) = ty else {
throw!(*SYM_TYPE_ERROR, "type expected symbol, got {ty:#}")
};
Ok((val.get_type() == ty).into())
}
#[native_func(2, "as")]
pub fn as_(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, val, ty] = unpack_args!(args);
let Value::Symbol(ty) = ty else {
throw!(*SYM_TYPE_ERROR, "type expected symbol, got {ty:#}")
};
if val.get_type() == ty {
return Ok(val)
}
match (val, ty.name().as_bytes()) {
(_, b"nil") => Ok(Value::Nil),
(v, b"string") => Ok(Value::String(lformat!("{v}").into())),
(v, b"bool") => Ok(Value::Bool(v.truthy())),
(Value::Symbol(s), b"int") => Ok(Value::from(s.id() as i64)),
(Value::Int(x), b"ratio") => Ok(Value::from(Ratio::from_integer(x.into()))),
(Value::Int(x), b"float") => Ok(Value::Float(x.to_f64_uc())),
(Value::Int(x), b"complex") => Ok(Value::Complex(x.to_f64_uc().into())),
(Value::Ratio(x), b"int") => Ok(Value::from(x.to_integer())),
(Value::Ratio(x), b"float") => Ok(Value::Float(x.to_f64_uc())),
(Value::Ratio(x), b"complex") => Ok(Value::Complex(x.to_f64_uc().into())),
(Value::Float(x), b"int") => Ok(Value::from(Int::from_f64(x).unwrap_or_default())),
(Value::Float(x), b"ratio") => match Ratio::approximate_float(x) {
Some(v) => Ok(Value::from(v)),
None => throw!(
*SYM_VALUE_ERROR,
"float {x} could not be converted to ratio"
),
},
(Value::Float(x), b"complex") => Ok(Value::Complex(x.into())),
(Value::String(s), b"int") => parse_int(s.as_ref(), 10)
.map(Value::from)
.map_err(|_| exception!(*SYM_VALUE_ERROR, "could not parse {s:#} as integer")),
(Value::String(s), b"float") => parse_float(s.as_ref())
.map(Value::from)
.map_err(|_| exception!(*SYM_VALUE_ERROR, "could not parse {s:#} as float")),
(v, _) => throw!(
*SYM_TYPE_ERROR,
"cannot convert value of type {} to type {}",
v.get_type().name(),
ty.name()
),
}
}
pub fn copy_inner(value: Value) -> Result<Value> {
match value {
Value::Nil
| Value::Bool(_)
| Value::Symbol(_)
| Value::Int(_)
| Value::Ratio(_)
| Value::Float(_)
| Value::Complex(_)
| Value::Range(_)
| Value::String(_) => Ok(value),
Value::Cell(c) => {
let c = Rc::unwrap_or_clone(c).take();
let c = copy_inner(c)?;
Ok(RefCell::new(c).into())
}
Value::List(l) => {
let l = Rc::unwrap_or_clone(l).take();
let v: Result<Vec<Value>> = l.into_iter().map(copy_inner).collect();
Ok(v?.into())
}
Value::Table(t) => {
let t = Rc::unwrap_or_clone(t).take();
let v: Result<HashMap<HashValue, Value>> = t
.into_iter()
.map(|(k, v)| copy_inner(v).map(|v| (k, v)))
.collect();
Ok(v?.into())
}
Value::Native(ref n) => match n.copy_value()? {
Some(x) => Ok(x),
None => throw!(
*SYM_TYPE_ERROR,
"cannot copy value of type {}",
value.get_type().name()
),
},
_ => throw!(
*SYM_TYPE_ERROR,
"cannot copy value of type {}",
value.get_type().name()
),
}
}
#[native_func(1)]
pub fn copy(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, val] = unpack_args!(args);
copy_inner(val)
}
//
// strings
//
#[native_func(1, "str")]
pub fn str_(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, val] = unpack_args!(args);
Ok(lformat!("{val}").into())
}
#[native_func(1)]
pub fn repr(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, val] = unpack_args!(args);
Ok(lformat!("{val:#}").into())
}
//
// symbols
//
#[native_func(1)]
pub fn symbol_name(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, val] = unpack_args!(args);
let Value::Symbol(s) = val else {
throw!(*SYM_TYPE_ERROR, "symbol_name: expected symbol")
};
Ok(s.name().into())
}
#[native_func(1)]
pub fn symbol_of(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, val] = unpack_args!(args);
let Value::String(s) = val else {
throw!(*SYM_TYPE_ERROR, "symbol_of: expected string")
};
Ok(Symbol::get(s.as_ref()).into())
}
#[native_func(1)]
pub fn symbol_exists(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, val] = unpack_args!(args);
let Value::String(s) = val else {
throw!(*SYM_TYPE_ERROR, "symbol_of: expected string")
};
match Symbol::try_get(s.as_ref()) {
Some(s) => Ok(s.into()),
None => Ok(Value::Nil),
}
}
//
// cells
//
#[native_func(1)]
pub fn cell(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, value] = unpack_args!(args);
Ok(RefCell::new(value).into())
}
#[native_func(1)]
pub fn uncell(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, cell] = unpack_args!(args);
let Value::Cell(cell) = cell else {
throw!(*SYM_TYPE_ERROR, "uncell: value is not a cell")
};
Ok(Rc::unwrap_or_clone(cell).into_inner())
}
#[native_func(2)]
pub fn cell_replace(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, cell, value] = unpack_args!(args);
let Value::Cell(cell) = cell else {
throw!(*SYM_TYPE_ERROR, "cell_replace: value is not a cell")
};
Ok(cell.replace(value))
}
#[native_func(1)]
pub fn cell_take(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, cell] = unpack_args!(args);
let Value::Cell(cell) = cell else {
throw!(*SYM_TYPE_ERROR, "cell_take: value is not a cell")
};
Ok(cell.replace(Value::Nil))
}
//
// functions
//
#[native_func(1)]
pub fn func_state(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, func] = unpack_args!(args);
match func {
Value::NativeFunc(_) => Ok(Value::Nil),
Value::Function(f) => {
let l: Vec<Value> = f.state.iter().map(|v| Value::Cell(v.clone())).collect();
Ok(l.into())
}
_ => throw!(
*SYM_TYPE_ERROR,
"closure_state: {func:#} is not a talc function"
),
}
}
#[native_func(1)]
pub fn func_arity(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, func] = unpack_args!(args);
let Some(attrs) = func.func_attrs() else {
throw!(*SYM_TYPE_ERROR, "closure_state: {func:#} is not a function")
};
Ok((attrs.arity as i64).into())
}
#[native_func(1)]
pub fn func_name(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, func] = unpack_args!(args);
let Some(attrs) = func.func_attrs() else {
throw!(*SYM_TYPE_ERROR, "closure_state: {func:#} is not a function")
};
if let Some(name) = attrs.name {
Ok(name.into())
} else {
Ok(Value::Nil)
}
}
#[native_func(2)]
pub fn apply(vm: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, func, lst] = unpack_args!(args);
if func.func_attrs().is_none() {
throw!(
*SYM_TYPE_ERROR,
"apply: first argument must be a function, found {func:#}"
)
}
let Value::List(l) = lst else {
throw!(
*SYM_TYPE_ERROR,
"apply: second argument must be a list, found {lst:#}"
)
};
let mut args = l.borrow().clone();
args.insert(0, func.clone());
vm.call_value(func, args)
}
#[native_func(1)]
pub fn compile(_: &mut Vm, args: Vec<Value>) -> Result<Value> {
let [_, src] = unpack_args!(args);
let Value::String(src) = src else {
throw!(
*SYM_TYPE_ERROR,
"compile: argument must be a string, found {src:#}"
)
};
let src = src.to_str().map_err(|e| {
exception!(
*SYM_VALUE_ERROR,
"compile: argument must be valid unicode ({e})"
)
})?;
let ast = talc_lang::parser::parse(src)
.map_err(|e| exception!(symbol!("parse_error"), "{e}"))?;
let func = talc_lang::compiler::compile(&ast, None)
.map_err(|e| exception!(symbol!("compile_error"), "{e}"))?;
Ok(func.into())
}