225 lines
4.7 KiB
Text
225 lines
4.7 KiB
Text
|
α \alpha
|
|||
|
β \beta
|
|||
|
γ \gamma
|
|||
|
δ \delta
|
|||
|
ε \epsilon
|
|||
|
ζ \zeta
|
|||
|
η \eta
|
|||
|
θ \theta
|
|||
|
ϑ \vartheta
|
|||
|
ι \iota
|
|||
|
κ \kappa
|
|||
|
λ \lambda lamda
|
|||
|
μ \mu micro
|
|||
|
ν \nu
|
|||
|
ξ \xi
|
|||
|
ο \omicron
|
|||
|
π \pi
|
|||
|
ρ \rho
|
|||
|
σ \sigma
|
|||
|
ς \varsigma
|
|||
|
τ \tau
|
|||
|
υ \upsilon
|
|||
|
φ \phi
|
|||
|
ϕ \varphi
|
|||
|
χ \chi
|
|||
|
ψ \psi
|
|||
|
ω \omega
|
|||
|
Α \Alpha
|
|||
|
Β \Beta
|
|||
|
Γ \Gamma
|
|||
|
Δ \Delta
|
|||
|
Ε \Epsilon
|
|||
|
Ζ \Zeta
|
|||
|
Η \Eta
|
|||
|
Θ \Theta
|
|||
|
Ι \Iota
|
|||
|
Κ \Kappa
|
|||
|
Λ \Lambda Lamda
|
|||
|
Μ \Mu
|
|||
|
Ν \Nu
|
|||
|
Ξ \Xi
|
|||
|
Ο \Omicron
|
|||
|
Π \Pi product
|
|||
|
Ρ \Rho
|
|||
|
Σ \Sigma sum
|
|||
|
Τ \Tau
|
|||
|
Υ \Upsilon
|
|||
|
Φ \Phi
|
|||
|
Χ \Chi
|
|||
|
Ψ \Psi
|
|||
|
Ω \Omega ohm
|
|||
|
ℵ aleph alef
|
|||
|
ℶ beth
|
|||
|
ℷ gimel
|
|||
|
ℸ daleth
|
|||
|
ה he
|
|||
|
ו waw vav
|
|||
|
ז zayin
|
|||
|
ח chet
|
|||
|
ט tet
|
|||
|
י yod
|
|||
|
כ kaf
|
|||
|
ך varkaf
|
|||
|
ל lamed
|
|||
|
מ mem
|
|||
|
ם varmem
|
|||
|
נ nun
|
|||
|
ן varnun
|
|||
|
ס samech
|
|||
|
ע ayin
|
|||
|
פ pe
|
|||
|
ף varpe
|
|||
|
צ tsadi
|
|||
|
ץ vartsadi
|
|||
|
ק qof
|
|||
|
ר resh
|
|||
|
ש shin
|
|||
|
ת tav
|
|||
|
° \degree
|
|||
|
– en dash
|
|||
|
— em dash
|
|||
|
† \dag dagger cross
|
|||
|
‡ \ddag double dagger cross
|
|||
|
• bullet
|
|||
|
‣ triangle bullet
|
|||
|
… \dots ellipses
|
|||
|
‰ \permil per mille thousand
|
|||
|
‱ \pertenthousand per ten thousand
|
|||
|
‽ interrobang
|
|||
|
∧ \land \wedge logical and
|
|||
|
∨ \lor \vee logical or
|
|||
|
¬ \lnot \neg logical not
|
|||
|
← arrow left
|
|||
|
→ arrow right implies
|
|||
|
↔ arrow leftright left right biconditional
|
|||
|
↑ arrow up
|
|||
|
↓ arrow down
|
|||
|
↕ arrow updown up down
|
|||
|
↖ arrow upleft up left
|
|||
|
↗ arrow upright up right
|
|||
|
↘ arrow downright down right
|
|||
|
↙ arrow downleft down left
|
|||
|
⇐ arrow double left
|
|||
|
⇒ arrow double right
|
|||
|
⇔ arrow double leftright left right
|
|||
|
⇑ arrow double up
|
|||
|
⇓ arrow double down
|
|||
|
⇕ arrow double updown up down
|
|||
|
⇖ double arrow upleft up left
|
|||
|
⇗ double arrow upright up right
|
|||
|
⇘ double arrow downright down right
|
|||
|
⇙ double arrow downleft down left
|
|||
|
∃ \exists
|
|||
|
∀ \forall for all
|
|||
|
∄ \not\exists not exists
|
|||
|
∂ \partial differential derivative
|
|||
|
∇ \nabla del
|
|||
|
∈ \in element
|
|||
|
∉ \notin \not\in not element
|
|||
|
∊ small element
|
|||
|
∋ \ni contains
|
|||
|
∌ \not\ni contains
|
|||
|
∍ small contains
|
|||
|
∅ \emptyset empty set
|
|||
|
∏ product
|
|||
|
∐ coproduct
|
|||
|
∑ sum
|
|||
|
ℂ complex bbC \mathbb{C}
|
|||
|
ℍ quaternions bbH \mathbb{H}
|
|||
|
ℕ naturals bbN \mathbb{N}
|
|||
|
ℙ projective prime power bbP \mathbb{P}
|
|||
|
ℚ rationals fractions bbQ \mathbb{Q}
|
|||
|
ℝ reals bbR \mathbb{R}
|
|||
|
ℤ integers bbZ \mathbb{Z}
|
|||
|
↊ dozenal duodecimal ten inverted two
|
|||
|
↋ dozenal duodecimal eleven inverted three
|
|||
|
æ ae ligature
|
|||
|
œ oe ligature
|
|||
|
© copyright
|
|||
|
™ trademark
|
|||
|
® register mark sign
|
|||
|
± \pm plus minus
|
|||
|
∓ \mp minus plus
|
|||
|
∖ \setminus set difference
|
|||
|
∗ \ast asterisk convolution
|
|||
|
☭ communism hammer and sickle
|
|||
|
∘ \circ circle
|
|||
|
∙ \cdot center dot
|
|||
|
√ \root radical
|
|||
|
∛ 3root root3 cube root
|
|||
|
∜ 4root root4 fourth root
|
|||
|
∝ proportional \propto
|
|||
|
∞ \infty infinity
|
|||
|
∩ \cap intersect
|
|||
|
∪ \cup contains
|
|||
|
∫ \int integral
|
|||
|
∬ \iint double integral
|
|||
|
∭ \iiint triple integral
|
|||
|
∮ \oint contour integral
|
|||
|
∯ \oiint double contour integral
|
|||
|
∰ \oiiint triple contour integral
|
|||
|
÷ \div division
|
|||
|
∴ \therefore
|
|||
|
∵ \because
|
|||
|
∶ ratio
|
|||
|
∷ double colon ratio
|
|||
|
∣ \mid divides
|
|||
|
∤ \not\mid not divides
|
|||
|
∠ angle
|
|||
|
∼ \sim asymptotically equal
|
|||
|
≁ \not\sim not asymptotically equal
|
|||
|
≃ \simeq
|
|||
|
≄ \not\simeq
|
|||
|
≅ \cong congruent isomorphic
|
|||
|
≇ \not\cong not congruent isomorphic
|
|||
|
≈ \approx approximately equal
|
|||
|
≉ \not\approxi not approximately equal
|
|||
|
≠ \neq not equal
|
|||
|
≡ \equiv equivalent
|
|||
|
≢ \not\equiv not equivalent
|
|||
|
≤ \le less than or equal
|
|||
|
≥ \ge greater than or equal
|
|||
|
≮ \not< not less than
|
|||
|
≯ \not> not greater than
|
|||
|
≰ \not\le not less than or equal
|
|||
|
≱ \not\ge not greater than or equal
|
|||
|
⊂ \subset
|
|||
|
⊃ \supset superset
|
|||
|
⊄ \not\subset not subset
|
|||
|
⊅ \not\supset not superset
|
|||
|
⊆ \subseteq subset or equal
|
|||
|
⊇ \supseteq superset or equal
|
|||
|
⊆ \not\subseteq not subset or equal
|
|||
|
⊇ \not\supseteq not superset or equal
|
|||
|
⊊ \subsetneq subset not equal
|
|||
|
⊋ \supsetneq superset not equal
|
|||
|
⊕ \oplus plus with circle
|
|||
|
⊖ \ominus minus with circle
|
|||
|
⊗ \otimes times cross multiply with circle
|
|||
|
⊘ \oslash slash divide with circle
|
|||
|
⊙ \odot dot with circle
|
|||
|
⊞ plus with square
|
|||
|
⊟ minus with square
|
|||
|
⊠ times cross multiply with square
|
|||
|
⊡ dot with square
|
|||
|
⊢ \vdash turnstile right tack tee
|
|||
|
⊣ \dashv reverse turnstile
|
|||
|
⊤ \top true
|
|||
|
⊥ \bot bottom false
|
|||
|
⊨ \models entails double turnstile
|
|||
|
⊬ \not\vdash not turnstile right tack tee
|
|||
|
⊭ \not\models not models entails double turnstile
|
|||
|
⊲ \triangleleft \vartriangleleft strict normal subgroup
|
|||
|
⊳ \triangleright \vartriangleright strict normal supergroup
|
|||
|
⊴ \unlhd \vartrianglelefteq normal subgroup or equal
|
|||
|
⊵ \unrhd \vartrianglerighteq normal supergroup or equal
|
|||
|
⋪ \not\triangleleft \not\vartriangleleft not strict normal subgroup
|
|||
|
⋫ \not\triangleright \not\vartriangleright not strict normal supergroup
|
|||
|
⋬ \not\unlhd \not\vartrianglelefteq not normal subgroup or equal
|
|||
|
⋭ \not\unrhd \not\vartrianglerighteq not normal supergroup or equal
|
|||
|
⋮ \vdots vertical dots
|
|||
|
⋯ \cdots ellipsis dots
|
|||
|
⋱ \ddots diagonal dots
|
|||
|
⋰ \iddots \udots reverse diagonal dots
|